
Inheritance in Java

1. Inheritance

2. Types of Inheritance

3. Why multiple inheritance is not possible in java in case of class?

Inheritance in java is a mechanism in which one object acquires all the properties and
behaviors of parent object.

The idea behind inheritance in java is that you can create new classes that are built upon

existing classes. When you inherit from an existing class, you can reuse methods and fields
of parent class, and you can add new methods and fields also.

Inheritance represents the IS-A relationship, also known as parent-child relationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

Syntax of Java Inheritance

1. class Subclass-name extends Superclass-name

2. {

3. //methods and fields

4. }

The extends keyword indicates that you are making a new class that derives from an

existing class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called parent or super class and the

new class is called child or subclass.

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the

superclass. Relationship between two classes is Programmer IS-A Employee.It means

that Programmer is a type of Employee.

1. class Employee{

2. float salary=40000;

3. }

4. class Programmer extends Employee{

5. int bonus=10000;

6. public static void main(String args[]){

7. Programmer p=new Programmer();

8. System.out.println("Programmer salary is:"+p.salary);

9. System.out.println("Bonus of Programmer is:"+p.bonus);

10. }

11. }

Test it Now

 Programmer salary is:40000.0

 Bonus of programmer is:10000

In the above example, Programmer object can access the field of own class as well as of

Employee class i.e. code reusability.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only.

We will learn about interfaces later.

Note: Multiple inheritance is not supported in java through class.

When a class extends multiple classes i.e. known as multiple inheritance. For Example:

Single Inheritance Example

File: TestInheritance.java

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class TestInheritance{

8. public static void main(String args[]){

9. Dog d=new Dog();

10. d.bark();

11. d.eat();

12. }}

Output:

barking...

eating...

Multilevel Inheritance Example

File: TestInheritance2.java

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class BabyDog extends Dog{

8. void weep(){System.out.println("weeping...");}

9. }

10. class TestInheritance2{

11. public static void main(String args[]){

12. BabyDog d=new BabyDog();

13. d.weep();

14. d.bark();

15. d.eat();

16. }}

Output:

weeping...

barking...

eating...

Hierarchical Inheritance Example

File: TestInheritance3.java

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class Cat extends Animal{

8. void meow(){System.out.println("meowing...");}

9. }

10. class TestInheritance3{

11. public static void main(String args[]){

12. Cat c=new Cat();

13. c.meow();

14. c.eat();

15. //c.bark();//C.T.Error

16. }}

Output:

meowing...

eating...

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in

java.

Consider a scenario where A, B and C are three classes. The C class inherits A and B

classes. If A and B classes have same method and you call it from child class object, there

will be ambiguity to call method of A or B class.

Since compile time errors are better than runtime errors, java renders compile time error if

you inherit 2 classes. So whether you have same method or different, there will be compile
time error now.

1. class A{

2. void msg(){System.out.println("Hello");}

3. }

4. class B{

5. void msg(){System.out.println("Welcome");}

6. }

7. class C extends A,B{//suppose if it were

8.

9. Public Static void main(String args[]){

10. C obj=new C();

11. obj.msg();//Now which msg() method would be invoked?

12. }

13. }

